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Cellular transformation, the conversion of normal cells into tumorigenic cells
in vitro, is characterized by immortalization, anchorage- and serum-independent
growth and tumour formation in the nude mouse. Among these, anchorage-
independent growth is one of the defining characteristics of transformed cells and
tumour cells. Without attachment to the extracellular substrate, most normal cells
cannot grow or survive, but tumour cells can proliferate. Many oncogenes and
tumour suppressors are involved in regulating this process, among which is Abl
tyrosine kinases. Previous work showed that v-Abl, an oncogenic variant of c-Abl
kinase, induces anchorage-independent growth in the context of p53 deficiency, and
a recent study by our group showed that loss of c-Abl kinase also facilitates
anchorage-independent growth. The cellular context, such as a deficiency in both p53
and RB, is critical to induce anchorage independence by loss of c-Abl kinase. In this
review, we discuss the mechanisms of cellular transformation by oncogenic and
normal Abl kinases.

Key words: Abl kinases, anchorage independence, Bcr-Abl, c-Abl, cellular transfor-
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Abbreviations: ECM, Extracellular matrix; MFFs, mouse embryonic fibroblasts; CDK, Cylcin-dependent
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How do normal cells become tumorigenic? This remains
one of the most fundamental questions in the field of
cancer science. Although in vivo mouse models (knockout
or transgenic) gives robust evidence that certain genes
are involved in tumour development, the precise mecha-
nism(s) also need to be examined at the cellular level,
because tumorigenesis is a process accompanied by
multiple genetic and epigenetic alterations in cells.
Cellular transformation involves the conversion of
normal cells into malignant cells in vitro, and the
transformed cells acquire distinctive features such as
immortalization, anchorage-independent growth, serum-
independent growth and tumour formation in the nude
mouse. Among these features, anchorage-independent
growth capability (in vitro) correlates well with tumour
formation in the nude mouse (in vivo) (1–3), and is
therefore a prominent characteristic to define cellular
transformation (4). Without attachment to the extracel-
lular matrix (ECM), normal cells cannot grow or survive,
but tumour cells can proliferate. This indicates that
adhesion-dependent integrin signalling from the ECM
determines the growth properties of cells stimulated with
growth factors (5–7). Remarkably, growth factor-
mediated and integrin-mediated signalling regulate the
same signalling pathways (8). Efficient activation of the
Ras/Raf/MAPK pathway or the PI3K/Akt pathway by
growth factor requires cell adhesion (9–11). Cell adhesion

also regulates expression of c-fos and c-myc (12), which
is controlled by the Ras/Raf pathway (13, 14).
Considering that constitutive activation of Ras, Raf and
Mek facilitates anchorage- and serum-independent
growth of established cell lines, it is likely that regula-
tion of the Ras/Raf/Mek pathway is invariably important
in the process of tumorigenesis. Activation of this
signalling pathway induces cyclin D1 expression, which
regulates the G1/S transition (15). Integrins and growth
factors cooperatively regulate cyclin D1 expression via
cytoplasmic signalling pathways (16). Knockout of all
D-type cyclins (D1, D2 and D3) showed that cyclin D is a
critical mediator of oncogenic Ras-induced transforma-
tion of mouse embryonic fibroblasts (MEFs) (17).
Although cyclin D1 regulates the cell cycle in cyclin-
dependent kinase (CDK)-dependent and -independent
manners (18, 19), it remains to be elucidated how this
dual regulation contributes to the process of cellular
transformation.
It is noteworthy that expression of activated Ras in

primary MEFs provokes irreversible growth arrest,
known as premature senescence, via p53 or p16ink4a

(20), indicating that a single oncogene is insufficient to
induce malignant cellular transformation. How, then,
are oncogenes involved in transformation? Outstanding
work in the 1980s revealed that a combination of
oncogenes converts primary rodent cells into tumorigenic
cells: oncogenic Ras cooperates with adenovirus E1A,
v-myc or SV40T antigen to transform primary rodent
cells (21–23), suggesting that cytoplasmic and nuclear
oncoproteins collaborate in malignant transformation
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(24). In contrast to rodent cells, human cells are known
to be more refractory to oncogenic transformation (25).
However, Hahn et al. (26) showed that introduction of
the catalytic subunit of telomerase (hTERT) facilitates
transformation of primary human cells in combination
with activated Ras and SV40T antigen. This combina-
tion, however, converts human cells into full malignant
transformants only weakly (27–29). Akagi and colleagues
showed that Ras-induced activation of Erk is attenuated
in human cells but not in rodent cells. This, in turn,
abrogates up-regulation of Fra1 or down-regulation of
Caveolin-1, both of which are required for anchorage-
independent growth of human cells (30, 31). These
observations emphasize that differences between model
systems (e.g., human or rodent) should always be kept
in mind. Although combining oncogenes successfully
convert normal cells into tumorigenic cells in terms of
anchorage-independent growth, the precise mechanisms
need to be further investigated.
Regulation of Cellular Transformation by Abl

Kinases—c-abl is the proto-oncogene of the Abelson
leukaemia virus (ALV) oncogene v-abl and encodes a
non-receptor tyrosine kinase (32, 33). Structural differ-
ences between c-Abl and v-Abl are shown in Fig. 1. The
N-terminal region of c-Abl contains a myristoylation
modification signal, an SH3 domain, and an SH2 domain.
The SH3 domain is replaced with the viral protein
Gag in v-Abl, which results in acquisition of hyper
tyrosine kinase activity. In Bcr-Abl, Bcr is fused to the
N-terminus of c-Abl, and the coiled-coil region of Bcr
contributes to dimerization between Bcr-Abl molecules,
resulting in induction of up-regulated kinase activity.
Although ALV transforms pre-B cells in mice, and

v-Abl is required for this function, it primarily induces
apoptosis in B cells (34). In p53 or p19Arf knockout mice,
however, ALV fails to induce apoptosis and efficiently
transforms pre-B cells (35, 36). Although it is unclear
whether inactivation of the p19Arf/p53 pathway and
expression of v-Abl is enough to convert normal pre-B
cells into transformed cells, these studies suggest that

v-Abl transforms cells depending on the cellular context,
as does activated Ras. In primary MEFs, expression of
v-Abl induces senescence, but inactivation of the p53/
p19Arf pathway renders the cells susceptible to transfor-
mation by v-Abl (37). Expression of v-Abl is required
for both initiation and maintenance of the transformed
phenotype, because treatment with the Abl inhibitor
STI571 (Gleevec/Imatinib) stops proliferation of
transformed-pre-B cell lines (38). In the immortalized
murine cell line NIH3T3, v-Abl facilitates anchorage- and
serum-independent growth or growth arrest at the G1
phase, depending on the cellular context (39).
Overexpression of c-Abl in NIH3T3 cells also facilitates
growth arrest at the G1 phase but rarely facilitates
transformation (40). NIH3T3 cells are null for both
p16ink4a and p19Arf, but express wild-type p53 (41).
Although the precise mechanism is unknown, c-Abl
induces growth arrest rather than senescence or apopto-
sis depending on the cellular context, and at least
p16ink4a and p19Arf are dispensable for this function.
From the above observation, it appears that Abl

kinases generate both positive and negative signals for
growth, and that disabling the negative signal facilitates
oncogenic transformation. The mechanisms can be
explained by differences between the effects on Abl
kinase substrates of both positive and negative signals.
Because kinase activity of c-Abl is autoinhibited by
intramolecular folding of the N-terminus onto the
kinase domain (42, 43), replacement of SH3 domain
with the viral protein Gag may facilitate disruption of
autoinhibited kainse activity, as occurs with Bcr-Abl (44).
Thus, the balance between positive and negative
signals on substrate phosphorylation is altered in
v-Abl-transformed cells compared to normal cells expres-
sing c-Abl. It is known that an Abl-binding protein,
Abi-1, suppresses transformation of v-Abl-expressing
NIH3T3 cells (45, 46). We have found that Abi-1 binds
to both c-Abl and substrates and works as a regulator
of both kinase and substrate (47–49), and others have
found novel c-Abl substrates that are phosphorylated

Fig. 1. Structure of Abl kinases. c-Abl contains a myristoyla-
tion modification signal (M), SH3 domain, SH2 domain, kinase
domain, proline rich region (PR), DNA-binding domain, and
actin-binding domain. An SH3 domain in v-Abl is replaced with

the viral gene gag. In Bcr-Abl, a Bcr gene is fused to the N
terminus of c-Abl, resulting in loss of the myrstoylation
modification signal.
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by this mechanism (50–52). These observations suggest
that the negative signal for growth by Abl comprises
signalling pathways of Abi-1-mediated substrates of Abl.
Moreover, overexpression of c-Cbl, a substrate of Abl
(53, 54), in v-Abl expressing NIH3T3 cells inhibits
anchorage-independent growth (55). Overexpression of
DokL, a binding partner of Abl, also suppresses
v-Abl-mediated transformation of NIH3T3 cells (56).
Collectively, these observations suggest that Abl consti-
tutes a negative signal via Abi-1, c-Cbl, DokL, and
possibly other proteins.
In contrast to Abi-1 and c-Cbl, overexpression of c-Crk,

a regulator and substrate of c-Abl (57, 58), facilitates
anchorage-independent growth of NIH3T3 cells via
activation of focal adhesion kinase (FAK) by making a
complex with Casp130 (59). Because phosphorylation of c-
Crk by Abl promotes disassembly of the Crk/Casp130

complex and inhibits anchorage-independent growth (60),
it is more likely that overexpression of c-Crk overcomes
c-Abl-mediated disruption of the Crk/Casp130 complex. In
breast cancer cell lines, c-Crk phosphorylation by c-Abl
downstream of the EphB4 receptor inhibits viability,
proliferation, motility and invasion, suggesting that the
c-Abl-c-Crk pathway negatively regulates transformation
(61). It is still unknown whether overexpression of c-Crk
in v-Abl-transformed cells constitutes a positive or
negative signal for anchorage independence.
We have shown that the loss of c-Abl, and specifically

loss of its kinase activity, also facilitates anchorage-
independent growth of MEFs in the context of p53- and
RB-deficiency (62). In adherent cells, the phosphorylation
status of MAPK and Akt is not significantly different in
wild-type and c-abl-knockout MEFs, but c-abl-knockout
MEFs show enhanced phosphorylation of these signals
when compared to wild-type MEFs in suspension
(J. Suzuki and T. Shishido, unpublished data). It is
noteworthy that c-Abl promotes proliferation of MEFs
lacking p53 in the adherent state (63). Taken together,
these observations suggest that normal levels of endo-
genous c-Abl are required to promote adherent growth
and inhibit anchorage-independent growth in the context
of p53 deficiency.
How is anchorage independence regulated positively

by v-Abl and negatively by c-Abl? One possibility is
that oncogenic variants of Abl eliminate negative signals
for anchorage-independent growth normally generated
by Abl. This model of anchorage-independent growth by
Abl is shown in Fig. 2. One candidate downstream
protein is Caveolin-1, which was identified as a substrate
of v-Src. In v-Src-, RasV12- or v-Abl-transformed
MEFs, expression of Caveolin-1 decreases due to
MAPK-dependent and -independent down-regulation of
gene expression (64). Expression of Caveolin-1 in v-Abl-
or RasV12-transformed NIH3T3 cells suppresses ancho-
rage-independent growth (65). Caveolin-1 is strongly
phosphorylated at tyrosine 14 in v-Abl-expressing cells
(66, 67). Although, it remains to be elucidated whether
c-Abl directly phosphorylates Caveolin-1, oxidative
stress-induced tyrosine phosphorylation of Caveolin-1
does not occur in c-abl-knockout MEFs (68).
Phosphorylation of Caveolin-1 tyrosine 14 has been
implicated in negative regulation of anchorage-
independent growth via inhibition of Erk, PI3K and

Rac by enriched membrane microdomain internalization
(69). In summary, c-Abl may partly suppress anchorage-
independent growth by phosphorylating Caveolin-1,
an effect which may be abrogated in v-Abl-expressing
cells by transcriptional repression of Caveolin-1 gene
expression (Fig. 3). However, it remains to be determined
which substrates of c-Abl are indeed involved in inhibi-
tion of positive signals regulating anchorage-independent
growth.
Regulation of Malignant Transformation in vivo by Abl

Kinases—Although a recent paper showed that c-Abl is
constitutively activated in some breast cancer cell lines,
and that its activity is required for invasion (70), it is
unclear whether c-Abl is involved in development of
solid tumours. Because c-abl-knockout mice die soon
after birth, it is currently unknown whether c-Abl works
as a tumour suppressor in vivo. In contrast, oncogenic
variants of Abl (Bcr-Abl, Tel-Abl and v-Abl) induce
leukaemia. Expression of v-Abl causes pre-B cell
leukaemia in mice and sarcoma in cats. Bcr-Abl, which
is generated by chromosomal translocation, causes
chronic myelogenous leukaemia (CML) (71, 72) or acute
lymphoblastic leukaemia in humans (73–76). CML
evolves from a chronic phase to an accelerated phase,
and finally to blast crisis, which is characterized by the
rapid expansion of a population of myeloid or lymphoid
differentiation-arrested blast cells (77). The mechanisms
of transition into blast crisis are largely unknown. We
found that expression of endogenous c-Abl is lost in
several CML cell lines, established from blast crisis
patients (62). Asimakopoulos et al. (78) have shown that

Fig. 2. Regulation of anchorage-independent growth by
Abl kinases. An oncogenic variant of Abl, v-Abl possesses
constitutive tyrosine kinase activity. Although Abl phospho-
rylates substrates which constitute positive and negative signals
for growth, v-Abl is likely to output more positive signal, which,
in turn, inhibits the negative signal generated by v-Abl itself.
Positive signal by Abl comprises of activation of Erk, Akt and
cyclin D, but it is unclear which substrates of Abl regulate this
pathway. Substrates of Abl regulating negative signal for
growth is likely to be Abi-1, c-Cbl, DokL and c-Crk. Unlike
v-Abl, kinase activity of c-Abl is tightly regulated and fluctuates
between inactive and active states. c-Abl outputs more negative
signal for growth in suspension, which blocks proliferation.

Transformation by Abl Kinases 455

Vol. 141, No. 4, 2007

 at U
niversidade Federal do Pará on Septem

ber 28, 2012
http://jb.oxfordjournals.org/

D
ow

nloaded from
 

http://jb.oxfordjournals.org/


the regulatory regions of c-abl are hypermethylated in
CML-blast crisis cells. These observations imply that
loss of c-Abl expression is associated with transition
into blast crisis. Because Bcr-Abl fails to induce ancho-
rage-independent growth in NIH3T3 cells, unlike
v-Abl (79, 80), it is possible that loss of c-abl expression
in the Bcr-Abl-expressing cells facilitates anchorage-
independent growth as observed in p53- and RB-deficient
MEFs (62). Whether this scenario is applicable to
leucocytes is currently unknown. Because blast crisis
is characterized by accumulation of myeloid or
lymphoid blast cells, it needs to be determined whether
loss of c-Abl in Bcr-Abl-expressing cells arrests
differentiation.
Conclusions and Future Perspectives—Cellular trans-

formation of primary cells is a powerful system to
investigate the role of target genes in tumorigenesis.
Using this system, the involvement of Abl kinase
in anchorage-independent growth was revealed. c-Abl
functions uniquely to induce or suppress anchorage-
independent growth in a cellular context-dependent
manner. A priority for future study is to identify the
main target of c-Abl in negative regulation of anchorage
independence. This will help us to understand how v-Abl
escapes from the negative signals produced by v-Abl
itself. Furthermore, it will be interesting to establish
whether c-Abl is deregulated in Bcr-Abl-expressing cells,
especially those cells in the blast crisis phase.
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